Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction

نویسنده

  • Uwe Ohler
چکیده

The reliable recognition of eukaryotic RNA polymerase II core promoters, and the associated transcription start sites (TSSs) of genes, has been an ongoing challenge for computational biology. High throughput experimental methods such as tiling arrays or 5' SAGE/EST sequencing have recently lead to much larger datasets of core promoters, and to the assessment that the well-known core promoter sequence elements such as the TATA box appear to be much less frequent than thought. Here, we address the co-occurrence of several previously identified core promoter sequence motifs in Drosophila melanogaster to determine frequently occurring core promoter modules. We then use this in a new strategy to model core promoters as a set of alternative submodels for different core promoter architectures reflecting these different motif modules. We show that this system improves greatly on computational promoter recognition and leads to highly accurate in silico TSS prediction. Our results indicate that at least for the case of the fruit fly, we are getting closer to an understanding of how the beginning of a gene is defined in a eukaryotic genome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ElemeNT: a computational tool for detecting core promoter elements

Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promot...

متن کامل

ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles

MOTIVATION More and more genomes are being sequenced, and to keep up with the pace of sequencing projects, automated annotation techniques are required. One of the most challenging problems in genome annotation is the identification of the core promoter. Because the identification of the transcription initiation region is such a challenging problem, it is not yet a common practice to integrate ...

متن کامل

Generic eukaryotic core promoter prediction using structural features of DNA.

Despite many recent efforts, in silico identification of promoter regions is still in its infancy. However, the accurate identification and delineation of promoter regions is important for several reasons, such as improving genome annotation and devising experiments to study and understand transcriptional regulation. Current methods to identify the core region of promoters require large amounts...

متن کامل

Nucleotide patterns aiding in prediction of eukaryotic promoters

Computational analysis of promoters is hindered by the complexity of their architecture. In less studied genomes with complex organization, false positive promoter predictions are common. Accurate identification of transcription start sites and core promoter regions remains an unsolved problem. In this paper, we present a comprehensive analysis of genomic features associated with promoters and ...

متن کامل

RBF-TSS: Identification of Transcription Start Site in Human Using Radial Basis Functions Network and Oligonucleotide Positional Frequencies

Accurate identification of promoter regions and transcription start sites (TSS) in genomic DNA allows for a more complete understanding of the structure of genes and gene regulation within a given genome. Many recently published methods have achieved high identification accuracy of TSS. However, models providing more accurate modeling of promoters and TSS are needed. A novel identification meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006